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1. Introduction

The conformal bootstrap program has provided very deep results in conformal field theory

and in particular in Liouville quantum field theory [1 – 3]. In this approach one assumes at

the outset conformal invariance and, by using formal properties of the functional integral

and some other assumptions, one arrives at functional equations for the correlation func-

tions. Under reasonable regularity assumptions their solution provide the exact correlation

functions.

Here and in an accompanying paper we address the problem to recover the conformal

theory from the usual field theoretic procedure in which one starts from a stable background

and then one integrates over the quantum fluctuations. As it is well known, a quantum field

theory is specified not only by an action but also by a regularization and renormalization

procedure. In [4 – 6] it was found that not all the regularization procedures provide a

theory which is invariant under the full conformal group. The regularization suggested at

the perturbative level in [1] in the case of the pseudosphere provides the vertex functions

with the correct quantum dimensions [7] at the first perturbative order. Here it is explicitly

proved that such a result stays unchanged to all orders perturbation theory. In particular

the weight of the cosmological term becomes (1, 1) as required by the invariance under

local conformal transformations.

The pseudosphere case was already considered in [1] and more fully developed in [4, 8].

These calculations correspond to a double perturbative expansion in the coupling constant

and in the charge of the vertex function.
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Here instead we start from the background generated by finite charges, i.e. “heavy

charges” in the terminology of [3]. This means that we consider the vertex operators

Vαn(zn) = e2αnφ(zn) with αn = ηn/b and ηn fixed in the semiclassical limit b → 0.

In the case of a single heavy charge, by solving a Riemann-Hilbert problem we are able

to compute the exact Green function on such a background in closed form, and the Green

function is used to develop the subsequent perturbative expansion in the coupling constant

for the one and two point functions. In this way we obtain a resummation of infinite classes

of perturbative graphs.

Some of the results derived here were reported in [9]. In the present paper we give full

details of the computational procedure. In section 2 we lay down the notations and discuss

the semiclassical limit. In section 3 it is shown that the regularization procedure of [1] pro-

vides the vertex functions with the correct quantum dimensions to all orders perturbation

theory. In section 4 we solve the Riemann Hilbert problem which allows the determination

of the exact Green function on the background given by one heavy charge. In section 5

the one loop correction to the semiclassical one point function is computed. The result

is compared with the expansion of the exact one point function derived in the bootstrap

approach [1] finding complete agreement. In section 6 the two point function with one finite

charge and an infinitesimal one is computed by employing analogous technique. Particular

cases of such new result are compared with the existing double perturbative expansion in α

and b and with a degenerate case, finding complete agreement in both cases. In appendix

A we derive the behavior of the conformal factor for the N point classical background at

infinity and in appendix B we give the details of the computation of the Green function.

2. Classical and quantum action on the pseudosphere

Let us consider the geometry of the pseudosphere in the representation of the unit disk

∆ = {z ∈ C ; |z| < 1}.

We write the N point function for the vertex operators Vα(z) = e2αφ(z) in the form
〈

e2α1φ(z1) . . . e2αN φ(zN )
〉

=
1

Z

∫
D [φ] e−S∆,N [φ] (2.1)

where

Z =

∫
D [φ] e−S∆,N= 0[φ] (2.2)

and S∆, N [φ] is the action of Liouville field theory on the pseudosphere in presence of N

sources, which is given by the following expression [3, 4]

S∆, N [φ] = lim
εn→ 0

r→ 1

{ ∫

∆ r, ε

[
1

π
∂zφ∂z̄φ + µ e2bφ

]
d2z

−
Q

2πi

∮

∂∆r

φ

(
z̄

1 − zz̄
dz −

z

1 − zz̄
dz̄

)
+ f(r, b)

−
1

2πi

N∑

n=1

αn

∮

∂γn

φ

(
dz

z − zn
−

dz̄

z̄ − z̄n

)
−

N∑

n=1

α2
n log ε2

n

}
(2.3)

with Q = 1/b + b and d2z = idz ∧ dz̄/2.
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The integration domain ∆ r, ε = ∆ r\
⋃N

n=1 γn is obtained by removing N disks γn =

{|z − zn| < εn} from the disk ∆ r = { |z| < r < 1 } ⊂ ∆. The boundary behaviors of the

field φ are given by

φ(z) = −
Q

2
log ( 1 − zz̄ )2 + O(1) when |z| → 1 (2.4)

φ(z) = −αn log | z − zn |2 + O(1) when z → zn . (2.5)

The function f(r, b) is a subtraction term independent of the field φ and of the charges.

In order to connect the quantum theory to its semiclassical limit it is useful to define [3]

ϕ = 2bφ , αn =
ηn

b
. (2.6)

The charges αn = ηn/b are called heavy charges [3] because in the perturbative limit b → 0

the parameters ηn are kept fixed and therefore αn diverge. Since the measure is eϕd2z, the

condition of local finiteness of the area around each source and the asymptotic behavior

(2.5) for the field φ impose that 1 − 2ηn > 0 [10, 11].

Now we decompose the field ϕ as the sum of a classical background field ϕB and a

quantum field

ϕ = ϕB + 2b χ . (2.7)

Then, we can write the action as the sum of a classical and a quantum action as follows

S∆, N [φ] = Scl[ϕB ] + Sq[ϕB , χ] . (2.8)

The classical action is given by

Scl[ϕB ] =
1

b2
lim

εn→ 0

r → 1

{ ∫

∆r,ε

[
1

4π
∂zϕB ∂z̄ϕB + µb2eϕB

]
d2z (2.9)

−
1

4πi

∮

∂∆r

ϕB

(
z̄

1 − zz̄
dz −

z

1 − zz̄
dz̄

)
+ fcl(r, µb2)

−
1

4πi

N∑

n=1

ηn

∮

∂γn

ϕB

(
dz

z − zn
−

dz̄

z̄ − z̄n

)
−

N∑

n=1

η2
n log ε2

n

}

while the quantum action reads

Sq[ϕB , χ] = lim
εn→0

r → 1

{ ∫

∆r,ε

[
1

π
∂zχ∂z̄χ + µeϕB ( e2b χ − 1 ) −

1

πb
χ ∂z∂z̄ϕB

]
d2z

−
1

2πi b

∮

∂∆r

χ

(
z̄

1 − zz̄
−

1

2
∂zϕB

)
dz

+
1

2πi b

∮

∂∆r

χ

(
z

1 − zz̄
−

1

2
∂z̄ϕB

)
dz̄

−
1

4πi

∮

∂∆r

ϕB

(
z̄

1 − zz̄
dz −

z

1 − zz̄
dz̄

)
+ fq(r, µb2)
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−
b

2πi

∮

∂∆r

χ

(
z̄

1 − zz̄
dz −

z

1 − zz̄
dz̄

)

−
1

2πi b

N∑

n=1

∮

∂γn

χ

(
ηn

z − zn
+

1

2
∂zϕB

)
dz

+
1

2πi b

N∑

n=1

∮

∂γn

χ

(
ηn

z̄ − z̄n
+

1

2
∂z̄ϕB

)
dz̄

}
. (2.10)

We remark that the subtraction terms fcl(r, µb2) and fq(r, µb2) are independent of the

fields and of the charges ηn.

For the classical background field near the sources we have

ϕB(z) = − 2ηn log |z − zn|
2 + O(1) when z → zn (2.11)

while in appendix A the following boundary behavior for ϕB(z) is proved

ϕB(z) = − log (1 − zz̄)2 + f(µb2) + O((1 − zz̄)2) when |z| → 1 (2.12)

where f(µb2) is a constant depending on µb2.

Comparing (2.11) with (2.5), we see that χ is regular at the sources. This fact and

the boundary behavior (2.11) imply the vanishing of the last two lines in (2.10) in the

limit εn → 0. Moreover, since the field χ can diverge only like a logarithm when zz̄ → 1,

the asymptotic (2.12) implies that the second and third lines in (2.10) vanish in the limit

r → 1.

Now we focus on the classical action Scl[ϕB]. The vanishing of its first variation with

respect to the field ϕB with boundary conditions (2.12) and (2.11) gives the Liouville

equation in presence of N sources

− ∂z∂z̄ ϕB + 2π µb2 eϕB = 2π

N∑

n=1

ηn δ2(z − zn) . (2.13)

Under a generic conformal transformation z → w(z) the background field changes as follows

ϕB(z) −→ ϕ̃B(w) = ϕB(z) − log

∣∣∣∣
dw

dz

∣∣∣∣
2

(2.14)

so that eϕBd2z is invariant.

In particular, under a SU(1, 1) transformation, which maps the unit disk ∆ into itself,

the classical action (2.9) changes as follows [4, 12]

S̃cl[ ϕ̃B ] = Scl[ϕB ] +

N∑

n=1

ηn( 1 − ηn)

b2
log

∣∣∣∣
dw

dz

∣∣∣∣
2

z=zn

. (2.15)

The classical action Scl[ϕB ] computed on the solution ϕB of the equation of motion (2.13)

becomes a function Scl(η1, z1; . . . ; ηN , zN ) of the positions zn of the sources and of their
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charges ηn. This function provides the semiclassical expression of the N point function for

the Liouville vertex operators Vα(z) = e2αφ(z)

〈Vα1
(z1) . . . VαN

(zN ) 〉sc =
e−Scl(η1, z1; ... ; ηN , zN )

e−Scl(0)
. (2.16)

The function in the denominator is the semiclassical contribution of the partition function

Z in (2.1) and it is SU(1, 1) invariant.

By using (2.15), we immediately see that (2.16) has the following transformation prop-

erties under SU(1, 1)

〈Ṽα1
(w1) . . . ṼαN

(wN ) 〉sc =
N∏

n=1

∣∣∣∣
dw

dz

∣∣∣∣
− 2 ηn(1−ηn)/b2

z=zn

〈Vα1
(z1) . . . VαN

(zN ) 〉sc . (2.17)

This means that the semiclassical dimensions of the vertex operator Vα(z) are η(1−η)/b2 =

α (1/b − α).

Now we consider the quantum action (2.10). For a background field ϕB satisfying the

Liouville equation with sources (2.13) and the boundary conditions (2.12) and (2.11), the

quantum action (2.10) becomes

Sq[ϕB , χ] = lim
r→1

{∫

∆r

[
1

π
∂zχ∂z̄χ + µeϕB ( e2b χ − 1 − 2b χ )

]
d2z

−
b

2πi

∮

∂∆r

χ

(
z̄

1 − zz̄
dz −

z

1 − zz̄
dz̄

) }
. (2.18)

If the Green function vanishes quadratically on the boundary, the last term in (2.18) does

not contribute to the perturbative expansion. In section 4 we shall verify this fact explicitly

for the case N = 1.

In this paper, we are mainly interested in the case of a single source, i.e. N = 1 and

η1 = η. By exploiting the invariance under SU(1, 1) we can place the source in z1 = 0.

In this case the background field, i.e. the solution of the Liouville equation (2.13) with

boundary behaviors (2.12) and (2.11), can be explicitly written [10, 13]

eϕcl =
1

πµb2

(1 − 2η)2

((zz̄)η − (zz̄)1−η)2
. (2.19)

It is important to notice that the behavior of ϕcl on the boundary ∂∆, i.e. at infinity, is

independent of η both in the divergent term and in the constant term

ϕcl = − log(1 − zz̄)2 − log (πµb2) + O((1 − zz̄)2) when zz̄ → 1 . (2.20)

Notice that the term O(1 − zz̄) is also absent, in agreement with the asymptotics (2.12)

for the background field.

In appendix A we prove that this is a general feature for the solution ϕB in presence of

N sources; therefore the two boundary integrals in the second line of (2.10) vanish when

|z| → 1, being χ logarithmically divergent at most.
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By using the explicit form of the classical background field (2.19), we can write the

expression of the semiclassical one point function for a vertex operator with charge α = η/b

placed in 0

〈
Vη/b(0)

〉
sc

= exp
{
−Scl[ϕcl] + Scl[ϕcl]| η=0

}
(2.21)

= exp

{
−

1

b2

(
η log (πµb2) + 2η + (1 − 2η) log(1 − 2η)

) }
.

The one point function in the basic vacuum found by Zamoldchikov and Zamolodchikov [1]

within the conformal bootstrap approach is

〈Vα(z1) 〉 =
U1,1(α)

(1 − z1z̄1) 2α(Q−α)
(2.22)

with

U1,1(α) = (πµγ(b2))−α/b Γ(Qb) Γ(Q/b)Q

Γ((Q − 2α) b) Γ((Q − 2α)/b) (Q − 2α)
(2.23)

where Q = 1/b + b and γ(x) = Γ(x)/Γ(1 − x).

The expression (2.21) agrees with the semiclassical term of (2.22) for z1 = 0 and

α = η/b.

3. The quantum dimensions

In this section we show that the quantum determinant of the N point function provides

the quantum correction to the conformal dimensions and that no further contributions to

the conformal dimensions occur.

The O(b0) quantum correction to the N point function 〈Vα1
(z1) . . . VαN

(zN ) 〉 is given

by the quantum determinant

( Det D )−1/2 ≡
1

Z0

∫
D [χ] exp

{
−

1

2

∫

∆
χ

(
−

2

π
∂z∂z̄ + 4µb2 eϕB

)
χd2z

}
(3.1)

where ϕB is the classical background field solving the Liouville equation and with asymp-

totics (2.12) and (2.11), while Z0 is the quadratic part of the partition function (2.2).

Taking the logarithmic derivative w.r.t. ηj of ( Det D )−1/2, we find the following inte-

gral

∂

∂ηj
log (Det D )−1/2 = − 2

∫

∆
g(z, z)

∂(µb2eϕB )

∂ηj
d2z ∀ j = 1, . . . , N (3.2)

where g(z, t) is the Green function on the classical background described by ϕB and, due

to the boundary behavior (2.12), we have that

∂(µb2eϕB )

∂ηj
= O(1) when |z| → 1 . (3.3)

This asymptotic behavior can be explicitly checked for the conformal factor (2.19) of the

N = 1 case. Formula (3.2) exposes the key role of the Green function at coincident

– 6 –
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points. Obviously g(z, z) has to be regularized and we shall show in what follows that the

regularization proposed by Zamolodchikov and Zamolodchikov (ZZ) in [1], i.e.

g(z, z) ≡ lim
t→ z

{
g(z, t) +

1

2
log | z − t |2

}
(3.4)

gives rise to the correct quantum dimensions. To this end we examine the transformation

properties of the quantum determinant.

From the equation satisfied by the Green function, that is

D g(z, z′) ≡

(
−

2

π
∂z∂z̄ + 4µb2 eϕB

)
g(z, z′) = δ2(z − z′ ) (3.5)

we see that, under a SU(1, 1) transformation

z −→ w =
a z + b

b̄ z + ā
|a|2 − |b|2 = 1 (3.6)

g(z, z′ ) is invariant in value, i.e.

g(z, z′) −→ g̃(w,w′) = g(z, z′) . (3.7)

Instead, because of the term log |z − t| in (3.4), the function g(z, z) transforms as follows

under SU(1, 1)

g(z, z) −→ g̃(w,w) = g(z, z) +
1

2
log

∣∣∣∣
dw

dz

∣∣∣∣
2

(3.8)

where w(z) is given by (3.6). Then, the transformation law for the expression (3.2) is

∂

∂ηj
log ( Det D̃ )−1/2 = − 2

∫

∆
g̃(w,w)

∂(µb2eϕ̃B )

∂ηj
d2w (3.9)

=
∂

∂ηj
log ( Det D )−1/2 −

∫

∆
log

∣∣∣∣
dw

dz

∣∣∣∣
2 ∂(µb2eϕB )

∂ηj
d2z (3.10)

where we have used the fact that the SU(1, 1) transformation (3.6) does not depend on

the charges ηj . The Liouville equation (2.13) allows to write the second term of (3.10) as

follows

−
1

2π
lim
r → 1

{
∂

∂ηj
lim

εn →0

∫

∆ r, ε

log

∣∣∣∣
dw

dz

∣∣∣∣
2

∂z∂z̄ϕB d2z

}
(3.11)

where the integration domain is the same occurring in (2.3). This integral can be computed

integrating by parts. Since a/b /∈ ∆, it becomes

−
∂

∂ηj

N∑

k=1

ηk log

∣∣∣∣
dw

dz

∣∣∣∣
2

z=zk

(3.12)

+ lim
r → 1

∂

∂ηj

[
1

4πi

∮

∂∆r

ϕB ∂z log
dw

dz
dz +

1

4πi

∮

∂∆r

∂z̄ϕB log

∣∣∣∣
dw

dz

∣∣∣∣
2

dz̄

]
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where the first line comes from the circles γn around the sources, as ϕB behaves like in (2.11).

Then, because of the asymptotic (2.12), the second line of (3.12) vanishes in the limit r → 1

and we are left only with the first line.

By integrating back, we find

log (Det D̃ )−1/2 = log (Det D )−1/2 −
N∑

k=1

ηk log

∣∣∣∣
dw

dz

∣∣∣∣
2

z=zk

+ f(z1, . . . , zN ) (3.13)

where f(z1, . . . , zN ) is a function of the positions of the sources and of the transformation

parameters but, since when all the charges vanish we have

( Det D̃ )−1/2
∣∣∣
ηi=0

= (Det D )−1/2
∣∣∣
ηi=0

= 1 (3.14)

then f(z1, . . . , zN ) vanishes identically and the transformation law for the quantum deter-

minant under SU(1, 1) reads

( Det D̃ )−1/2 =

N∏

n=1

∣∣∣∣
dw

dz

∣∣∣∣
− 2ηn

z=zn

( Det D )−1/2 . (3.15)

Comparing this result with (2.17), we find that the semiclassical dimensions η(1 − η)/b2

are modified by a quantum correction to

∆α =
η(1 − η)

b2
+ η = α(Q − α) (3.16)

i.e.

〈Ṽα1
(w1) . . . ṼαN

(wN ) 〉 =
N∏

n=1

∣∣∣∣
dw

dz

∣∣∣∣
− 2 (ηn(1−ηn)/b2+ηn)

z=zn

〈Vα1
(z1) . . . VαN

(zN ) 〉 . (3.17)

The quantum conformal dimensions (3.16) are the ones found in [7] within the hamiltonian

approach.

There are no further corrections to the quantum conformal dimensions (3.16) of the

vertex operator Vα(z) = e2αφ(z). This statement can be proved to all order in b by direct

inspection of the perturbative graphs occurring in the expansion in α and b, along the line

of [1, 4, 8]; therefore now the propagator is given by (B.22).

Since we adopt a SU(1, 1) non invariant regularization [1, 4], the graphs that can modify

the conformal dimensions are only the ones containing tadpoles or simple loops. Let us

consider a vertex which bears r simple loops, m − r tadpoles and k ordinary propagators,

as shown in the following figure

m − r

k

r

– 8 –
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The order of this vertex is k + 2r + (m− r) = k + r + m. It is generated by the interaction

term ∫

∆

(2bχ(z))k+m+r

(k + m + r)!
dν(z)

1

(m − r)!

m−r∏

s=1

(
−

∫

∆

(2bχ(zs))
3

3!
dν(zs)

)
(3.18)

where the measure is defined as

dν(z) ≡ µ eϕcl(z)|η=0 d2z =
d2z

πb2(1 − zz̄)2
. (3.19)

The effective vertex due to (3.18) is

∫

∆
dν(z)

(2b)k+m+r

(k + m + r)!

(
k + m + r

k

)
χk(z) × (3.20)

×

(
m + r

m − r

) (
−

23b3

3!
3P (z)

)m−r

(2r − 1)!! ĝ(z, z)r

where P (z) is the tadpole contribution

P (z) =

∫

∆
ĝ(z, z′) ĝ(z′, z′) dν(z′) . (3.21)

Adopting the ZZ regularization procedure [1], the propagator at coincident points (i.e. the

simple loop) is given by

ĝ(z, z) ≡ lim
t→ z

{
ĝ(z, t ) +

1

2
log | z − t |2

}
= log(1 − zz̄) − 1 . (3.22)

Working out the factorials in (3.20) and summing over the number r of simple loops, we

have

m∑

r=0

∫

∆
dν(z)

(2bχ(z))k

k!

(2b2)m

m!
( − 4b2P (z))m−r

(
m

m − r

)
ĝ(z, z)r = (3.23)

=

∫
dν(z)

(2bχ(z))k

k!

(2b2)m

m!
( − 4b2P (z) + ĝ(z, z) )m .

Using the equation for the propagator ĝ(z, z′) is easy to show that [1]

− 4 b2 P (z) + ĝ(z, z) =
1

2
. (3.24)

Notice that if one chooses a SU(1, 1) invariant regularization instead of (3.22), then the

identity (3.24) has a vanishing right hand side.

Repeating the argument for all vertices bearing tadpoles and simple loops, we are left

with a convergent graph which is invariant under SU(1, 1).

As shown in [4], starting from the regularized action (2.8), the exponentiation of the

following graph
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changes the dimensions of the vertex operator Vα(z) from the semiclassical value α(1/b−α)

to the value α(1/b + b − α) = α(Q − α). We recall [1, 4] that in the standard approach in

which one simply adds sources to the action [1], the change from the naive dimensions α/b

to the semiclassical dimensions α(1/b−α) is provided by the exponentiation of the simple

loop (3.22), which is absent in the approach adopted in [4] that starts from the classical

regularized action (2.8) and recovers α(1/b − α) at the semiclassical level.

4. The Green function on the classical background

Our next aim will be to compute the exact Green function on the classical background

ϕcl given in (2.19). We shall employ the method developed in [5]. The procedure allows

also to compute the first term of the expansion in ε of the conformal factor in presence

of the source in z = 0 (∆ representation) with finite charge η and of another source with

infinitesimal charge ε elsewhere.

First, we recall that the general solution of the Liouville equation in presence of N

sources is given by

πµb2 eϕ(z) =
|ω12 |

2

(
y1(z) y1(z) − y2(z) y2(z)

)2
(4.1)

where yi(z) are two independent solutions of the fuchsian differential equation

d 2y

dz2
+ Q(z) y = 0 (4.2)

and ω12 is their wronskian ω12 = y1y
′
2 − y′1y2. The expression of Q(z) is given by

eϕ/2 ∂2
ze−ϕ/2 =

1

4
(∂zϕ)2 −

1

2
∂2

zϕ = −Q(z) = − b2 T (z) (4.3)

where T (z) is the analytic component of the classical energy momentum tensor.

The analytic function Q(z) contains both double poles, whose residues are related to

the charges ηn, and simple poles, whose residues are the Poincaré accessory parameters

and have to be determined by imposing the monodromy condition on the solution.

Under a change z → ξ(z) the transformation law of the solutions of (4.2) is given by

y(z) −→ ỹ(ξ) = (z′(ξ))−1/2 y(z(ξ)) . (4.4)

It ensures that the wronskian and the measure eϕ(z)dz ∧ dz̄ are separately invariant.

The energy momentum tensor must satisfy some boundary conditions guaranteeing

that there is neither energy momentum flow [14, 15] nor singularity at infinity. These

conditions can be formulated in a clearer way in the upper half plane H = { ξ ∈ C ; Im(ξ) >

0 } representation; therefore, for the first part of the procedure, we shall work in this

domain.

The Cayley transformation

ξ = − i
z + 1

z − 1
←→ z =

ξ − i

ξ + i
(4.5)
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maps the upper half plane H into the unit disk ∆ and viceversa. Since its Schwarzian

derivative vanishes, we have that

Q(z) = (ξ′(z))2 Q̃(ξ(z)) = −
4

(1 − z)4
Q̃(ξ(z)) . (4.6)

In the upper half plane representation, the condition of no energy momentum flow at

infinity [14, 15] is that T̃ = T̃ on the real axis, which translates into

Q̃(ξ) = Q̃(ξ) when ξ ∈ R (4.7)

and therefore, by analyticity, for all ξ ∈ H. Instead, the condition of regularity of Q̃(ξ) at

infinity is

ξ4 Q̃(ξ) ∼ O(1) when ξ −→ ∞ . (4.8)

Let us begin with the unperturbed case of a single source of finite charge η. Because

of the SL(2, R) invariance of the upper half plane, we can place this source in ξ = i.

The function Q̃0(ξ) for the unperturbed case satisfying (4.7) can be written as

Q̃0(ξ) =
1 − λ2

i

4 ( ξ − i )2
+

1 − λ̄2
i

4 ( ξ + i )2
+

bi

2 ( ξ − i )
+

b̄i

2 ( ξ + i )
. (4.9)

The complex numbers bi and b̄i = b−i are the unperturbed accessory parameters related to

the singularities in i and in its image −i, respectively. The parameter λ2
i is related to the

charge η as follows

η(η − 1) +
1 − λ2

i

4
= 0 (4.10)

which tells us that λi = λ̄i, being η ∈ R. Moreover, by imposing the regularity condition

at infinity (4.8) for Q̃0(ξ), we find

bi = i 2η(1 − η) (4.11)

and the expression of Q̃0(ξ) becomes

Q̃0(ξ) =
4η(η − 1)

(ξ2 + 1)2
. (4.12)

In the ∆ representation, it reads

Q0(z) =
η(1 − η)

z2
. (4.13)

Two independent solutions are y1(z) = zη and y2(z) = z1−η and their wronskian ω12 =

y1y
′
2−y′1y2 = 1−2η is constant. Except for a numerical factor, they correspond respectively

to ỹ1(ξ) = (1 + iξ)η(1 − iξ)1−η and ỹ2(ξ) = (1 − iξ)η(1 + iξ)1−η in the H representation.

Now we perturb the previous geometry by introducing a new source at a generic point

ζ ∈ H with a small charge η2 = ε.

We can write down the perturbed energy momentum tensor satisfying (4.7) as follows

Q̃(ξ) = Q̃0(ξ) + ε q̃(ξ) (4.14)
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where Q̃0(ξ) is the unperturbed energy momentum tensor (4.12) and the perturbation q̃(ξ)

is given by

q̃(ξ) =
1

( ξ − ζ )2
+

1

( ξ − ζ̄ )2
+

βi

2 ( ξ − i )
+

β̄i

2 ( ξ + i )
+

βζ

2 ( ξ − ζ )
+

β̄ζ

2 ( ξ − ζ̄ )
. (4.15)

Notice that now the accessory parameters are given by the sum of their unperturbed values,

already determined, and a perturbation O(ε), whose complex coefficients ( i.e. βi and βζ

for the points i and ζ respectively) must satisfy the above mentioned conditions.

The regularity condition ξ3q̃(ξ) → 0 when ξ → ∞ implies that





βi + β̄i + ( βζ + β̄ζ ) = 0

4 + i ( βi − β̄i ) + ζ βζ + ζ̄ β̄ζ = 0

4 ( ζ + ζ̄ ) − ( βi + β̄i ) + ζ2 βζ + ζ̄ 2 β̄ζ = 0 .

(4.16)

We can use a SL(2, R) transformation which leaves i fixed to move the point ζ on the

imaginary axis, ζ = iτ , with τ ∈ R
+
0 and τ 6= 1. The system (4.16) simplifies to

{
Re(βi) = Re(βiτ ) = 0

Im(βi) = 2 − τ Im(βiτ ) ≡ β
(4.17)

and we are left only with the parameter β to determine.

Through the transformation law (4.6), we can write the expression q(z) of the pertur-

bation in the ∆ representation

q(z) =
1

( z − t )2
+

1

( z − 1/t )2
−

β

z
+

(
2 t + β

1 − t2

)
1

z − t
−

(
t
2 + t β

1 − t2

)
1

z − 1/t
(4.18)

where

t =
τ − 1

τ + 1
∈ (−1, 1) \ {0} ; τ ∈ R

+
0 \ {1} (4.19)

is the image in ∆ of the point iτ ∈ H through the Cayley transformation.

In the perturbed case, the conformal factor has the usual structure

πµb2 eϕ2(z) =
|Ω12|

2

(
Y1(z)Y1(z) − Y2(z)Y2(z)

)2 (4.20)

where Ω12 = Y1Y
′
2 − Y ′

1Y2.

The solutions Yj(z) of the perturbed problem can be written as a sum of the unper-

turbed solutions yj(z) and of a perturbation O(ε) as follows

Yi(z) = yi(z) + ε δyi(z) i = 1, 2 (4.21)

where δyj(z) satisfy the following inhomogeneous differential equation

d 2δyi

dz2
+ Q0(z) δyi = − q(z) yi . (4.22)

– 12 –



J
H
E
P
0
6
(
2
0
0
6
)
0
2
0

The solutions of this equation are given by the following integrals [5]

δyi(z) = −
1

ω12

∫ z

0
dx

(
y1(x) y2(z) − y1(z) y2(x)

)
q(x) yi(x)

= −
1

ω12
Ii1(z) y2(z) +

1

ω12
Ii2(z) y1(z) (4.23)

where

Iij(z) ≡

∫ z

0
yi(x) yj(x) q(x) dx . (4.24)

Notice that the integrals Iij(z) are invariant under the Cayley map

Ĩij(ξ) =

∫ ξ

i
ỹi(y) ỹj(y) q̃(y) dy =

∫ z

0
yi(x) yj(x) q(x) dx = Iij(z) . (4.25)

Since we have chosen the position of the finite source as starting point, we have that

Iij(0) = Ĩij(i) = 0.

More explicitly, the two independent solutions of the perturbed problem in terms of

the integrals Iij(z) are

Y (z) ≡

(
Y1(z)

Y2(z)

)
=

(
y1(z)

y2(z)

)
+

ε

ω12

(
I12(z) − I11(z)

I22(z) − I12(z)

)(
y1(z)

y2(z)

)

=

(
I +

ε

ω12
Mt(z)

) (
y1(z)

y2(z)

)
. (4.26)

Notice that, since trMt(z) = 0, then Ω12 = ω12 + O(ε2).

Moreover, if we consider a finite neighborhood of z = 0 not containing t and we let z

to encircle once the origin, i.e. z = ρ eiϕ with 0 < ρ < t with ϕ varying continuously from

0 to 2π, then the solutions Y1(z) and Y2(z) transform as follows

Y1(z) −→ e 2πi η Y1(z) Y2(z) −→ e 2πi (1−η) Y2(z) . (4.27)

This ensures that the conformal factor is monodromic around the point z = 0.

Now the only freedom left for the vector Y (z) is the multiplication by the matrix

K ∈ U(1, 1)

Y (z) −→ K Y (z) K =

(
k 0

0 1/k

)
(4.28)

where k = 1 + ε h(t) with h(t) ∈ C, i.e. the unperturbed value of k must be 1 in or-

der to recover the classical solution (2.19), which describes correctly the geometry of the

unperturbed case.

Now we have to impose the monodromy condition around the point z = t. To do this,

we need to compute the change of Iij(z) when z is near the point t and turns once around
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it. From the expression of q(z) given in (4.18), one easily sees that

δIij(t) =

∮

t
yi(x) yj(x) q(x) dx (4.29)

= 2πi

(
2 t + β

1 − t2

)
yi(t) yj(t) + 2πi

d

dz
( yi(z) yj(z) )

∣∣∣∣
z=t

.

Thus, the transformation of the vector Y (z) when one encircles z = t, including also the

multiplication (4.28), is given by the following matrix

I +
ε

ω12

(
δI12(t) − δI11(t)/k

2

δI22(t)/k
2 − δI12(t)

)
= I +

ε

ω12

(
δI12(t) − δI11(t)

δI22(t) − δI12(t)

)
+ O( ε2) . (4.30)

The monodromy around t imposes the U(1, 1) nature of such a matrix; therefore, we must

require that

δI12(t) = − δI12(t) δI22(t) = − δI11(t) . (4.31)

From (4.29), we have that

δI12(t) = 2πi

(
2 t + β

1 − t2
t + 1

)
(4.32)

δI11(t) = 2πi t2η−1

(
2 t + β

1 − t2
t + 2 η

)
(4.33)

δI22(t) = 2πi t1−2η

(
2 t + β

1 − t2
t + 2 − 2 η

)
. (4.34)

Since β ∈ R, the first condition of (4.31) is already realized. Instead, the second condition

provides the explicit expression of β

β = − 2
η + (1 − η) t2 − t2 (1−2η)

(
1 − η + η t2

)

t (1 − t2 (1−2η))
. (4.35)

Thus, the reflection condition (4.7) together with the regularity requirement at infinity (4.8)

and the monodromy of the perturbed solution (4.20) around 0 and t fix completely the

perturbed accessory parameters.

Now, if we write ϕ2(z) in (4.20) as follows

ϕ2(z) = ϕcl(z) + εψ(z, t) + O(ε2) (4.36)

where ϕcl(z) is given by (2.19), by using the expression (4.26) for the perturbed solutions,

we find that [5]

ψ(z, t ) = −
2

w12

{
y1ȳ1 + y2ȳ2

y1ȳ1 − y2ȳ2

(
I12 + Ī12 + 2Re h(t)

)

−
ȳ1y2 I11 + y1ȳ2 I22

y1ȳ1 − y2ȳ2
−

y1ȳ2Ī11 + ȳ1y2 Ī22

y1ȳ1 − y2ȳ2

}
. (4.37)
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The parameter Re h(t) appearing in this expression cannot be determined through mon-

odromy arguments because the term it multiplies

f(z) ≡
y1ȳ1 + y2ȳ2

y1ȳ1 − y2ȳ2
(4.38)

is a monodromic solution of the homogeneous differential equation

− ∂z∂z̄ f(z) + 2π µb2 eϕclf(z) = 0 . (4.39)

Instead, Re h(t) is fixed through the analysis of the behavior of ϕ2 when |z| → 1. Indeed,

f(z) violates the asymptotic (2.12) because it diverges as O(1/(1 − zz̄)) when |z| → 1;

therefore Reh(t) is uniquely determined by imposing the boundary conditions (2.12) for

the classical field ϕ2. Since the leading logarithmic divergence in (2.12) is already recovered

by ϕcl, then ψ(z, t) must not diverge when |z| → 1.

Before computing ψ(z, t) explicitly and examining its boundary behavior, we notice

that ψ(z, t) provides also the Green function on the classical background with one finite

source, i.e. ϕcl. Indeed, since ϕ2 describes the classical background of the pseudosphere

with one finite source of charge η1 = η in z1 = 0 and another source of infinitesimal charge

η2 = ε placed in z2 = t, it satisfies the following Liouville equation

− ∂z∂z̄ϕ2 + 2πµb2 eϕ2 = 2π η δ2(z) + 2π ε δ2(z − t ) . (4.40)

Taking the derivative of this equation w.r.t. ε and setting ε = 0, we find that ψ(z, t) solves

the following equation

− ∂z∂z̄ ψ + 2πµb2 eϕclψ = 2π δ2(z − t ) (4.41)

and therefore the Green function g(z, t) arising from the quadratic part of the quantum

action (2.18) is given by

g(z, t) = 〈χ(z)χ(t) 〉 =
1

4
ψ(z, t) . (4.42)

To understand better the final expression for g(z, t) it more useful to write it in the form

given below

g(z, t) = −
1

2w12

{
y1ȳ1 + y2ȳ2

y1ȳ1 − y2ȳ2

(
I12 + Ī12 + 2Re h(t)

)
(4.43)

−
y1ȳ1

y1ȳ1 − y2ȳ2

(
y2

y1
I11 +

ȳ2

ȳ1
Ī11

)
−

y2ȳ2

y1ȳ1 − y2ȳ2

(
y1

y2
I22 +

ȳ1

ȳ2
Ī22

) }
.

As noticed before and computed in appendix B, Reh(t) is fixed by the asymptotic behavior

of g(z, t) when |z| → 1 and the result is

Re h(t) =
1

2

(
1 + t2 (1−2η)

1 − t2 (1−2η)
log t2 (1−2η) + 2

)
. (4.44)
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Moreover, by exploiting the invariance under rotation, one can easily generalize all these

expressions to a complex t ∈ ∆.

The Green function in the explicit symmetric form is given by

g(z, t) = −
1

2

1 + (zz̄)1−2η

1 − (zz̄)1−2η

1 + (tt̄)1−2η

1 − (tt̄)1−2η
log ω(z, t) −

1

1 − 2η
(4.45)

−
1

1 − (zz̄)1−2η

1

1 − (tt̄)1−2η

{
(zt̄ )1−2η

(
B z/ t(2η, 0) − B zt̄ (2η, 0)

)

+ (z̄t)1−2η
(

B t/z(2η, 0) − B 1/(zt̄) (2η, 0)
)

+ c.c.

}

where ω(z, t) is the SU(1, 1) invariant

ω(z, t) =

∣∣∣∣
z − t

1 − z t̄

∣∣∣∣
2

(4.46)

which is related to the geodesic distance on the pseudosphere without sources.

Notice that only the special case Bx(a, 0) of the incomplete beta function Bx(a, b)

occurs; it is related to the hypergeometric function F (a, 1; a + 1; x) as follows

Bx(a, 0) =
xa

a
F (a, 1; a + 1; x) =

∫ x

0

ya−1

1 − y
dy =

∑

n > 0

xa+ n

a + n
. (4.47)

In appendix B it is shown that g(z, t) is regular at the origin and, through a partial wave

expansion, it is also shown that

g(z, t) = O((1 − zz̄)2) when |z| → 1 . (4.48)

Because of this asymptotic at infinity, the quantum action (2.18) becomes

Sq[χ] =

∫

∆

(
1

π
∂zχ∂z̄χ + 2µb2 eϕcl χ2

)
d2z +

∑

k > 3

(2b)k

k!

∫

∆
µ eϕcl χk d2z (4.49)

where ϕcl is given by (2.19).

A related function that will play a crucial role in what follows is the Green func-

tion (4.45) at coincident points regularized according to the ZZ procedure, i.e. (3.4).

By using the series representation (B.10) of the hypergeometric function F (a, 1; 1 +

a; x), we find that g(z, z) is given by

g(z, z) =

(
1 + (zz̄)1−2η

1 − (zz̄)1−2η

)2

log(1 − zz̄) −
1

1 − 2η

1 + (zz̄)1−2η

1 − (zz̄)1−2η
(4.50)

+
2 (zz̄)1−2η

(1 − (zz̄)1−2η)2

(
Bzz̄(2η , 0) + Bzz̄(2 − 2η , 0)

+ 2γE + ψ(2η) + ψ(2 − 2η) − log zz̄

)
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where γE is the Euler constant and ψ(x) = Γ′(x)/Γ(x).

The asymptotic behavior at infinity (i.e. when |z| → 1) of g(z, z) is the following

g(z, z) = log(1 − zz̄) − 1 −
η(1 − η)

6
(1 − zz̄)2 + O((1 − zz̄)3) . (4.51)

Notice that the dependence on the charge η occurs only at O((1 − zz̄)2).

5. The one point function: the quantum determinant

In this section we compute the quantum determinant for N = 1 explicitly and we compare

this result with the corresponding order in the expansion of the one point function obtained

in the bootstrap approach.

In order to find the quantum determinant for the one point function, we apply the

formula (3.2) with ϕB = ϕcl and with g(z, z) given by (4.50), i.e. for a single source η1 = η

at z1 = 0
∂

∂η
log (Det D(η, 0) )−1/2 = − 2

∫

∆
g(z, z)

∂(µb2eϕcl)

∂η
d2z . (5.1)

Using the behaviors (3.3) and (4.51) it is easily proved that this integral is convergent.

To compute it, it is more convenient to adopt the variable u ≡ (zz̄)1−2η in the radial

integration. Thus we have

∂(µb2eϕB )

∂η
d2z = −

1

π(1 − u)2

(
1 + u

1 − u
log u + 2

)
dudθ . (5.2)

Moreover it is useful to break (4.50) in the form

g(z, z) = −
1 − u2 + 2u log u

(1 − 2η)(1 − u)2
+ log (1 − u

1

1−2η ) +
2u

(1 − u)2
(5.3)

×
(
Bzz̄(2η , 0)+Bzz̄(2−2η , 0) +2γE + ψ(2η) + ψ(2 − 2η) + 2 log (1 − u

1

1−2η )
)

.

The integral of the first term is straightforward and it gives a contribution 1/(1 − 2η) in

the formula (5.1), while the second term of the first line and the second line are integrated

by parts in u, using that
∂Bx(a, 0)

∂x
=

xa−1

1 − x
. (5.4)

The sum of these three integrals provides the final result

∂

∂η
log ( Det D(η, 0) )−1/2 = 2 γE + 2ψ(1 − 2η) +

3

1 − 2η
. (5.5)

Integrating back in η with the initial condition

log ( Det D(η, 0) )−1/2
∣∣∣
η=0

= 0 (5.6)

we find the explicit expression of the logarithm of the quantum determinant

log (Det D(η, 0) )−1/2 = 2η γE − log Γ(1 − 2η) −
3

2
log(1 − 2η) . (5.7)
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Putting this result together with the classical contribution (2.21), we have the first two

terms of the perturbative expansion in the coupling constant b of the one point function

〈
Vη/b(0)

〉
=

〈
e2(η/b)φ(0)

〉
= exp

{
−

1

b2

[
η log(πµb2) + 2η + (1 − 2η) log(1 − 2η)

] }

×
e2ηγE

Γ(1 − 2η) (1 − 2η)3/2
(1 + O(b2)) . (5.8)

The expansion (5.8) agrees with the expansion in the coupling constant of the logarithm

of the formula U1,1(η/b) given in (2.23), found by ZZ [1] through the bootstrap method.

We remark that the result (5.8) corresponds to the summation of two infinite classes of

perturbative graphs computed on the regular background, i.e. with the classical field given

by ϕcl| η=0 and the propagator ĝ(z, z′) written in (B.22). These graphs can be recovered

by expanding the logarithm of (5.8) in η = α b.

The classical part gives rise to the following series of graphs

−
1

b2

[
η log(πµb2) + 2η + (1 − 2η) log(1 − 2η)

]
=

η

b2
ϕcl(0)| η=0 − 2

η2

b2
(5.9)

+
η3

b2

{ }
+

η4

b2

{ }
+

η5

b2

{ }

+
η6

b2

{ }
+ · · ·

= −
η

b2
log(πµb2) − 2

η2

b2
−

4

3

η3

b2
−

4

3

η4

b2
−

8

5

η5

b2
−

32

15

η6

b2
+ · · ·

while the quantum determinant contribution contains the following perturbative orders

2 γE η − log Γ(1 − 2η) −
3

2
log(1 − 2η) = η

{ }

+ η2

{ }
+η3
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+ η4









+ · · · (5.10)

= 3 η +

(
3 −

π2

3

)
η2 +

4

3
(3 − 2 ζ(3)) η3 + 2

(
3 −

π4

45

)
η4 + · · · .

All the propagators in the figures are given by ĝ(z, z′). Those starting from the source

were denoted in [4] by dotted lines because they still represent a classical field even though

computationally they are given by the same expression.

The first orders of the classical part have been determined in [1] while the orders

O(η4/b2) and O(η5/b2) have been computed in [4]. As for the quantum determinant, the

O(η2) contribution agrees with the result obtained by ZZ [1], while the O(η3) term agrees

with the explicit, but far more difficult computation performed in [8]. Instead, the O(η4)

term and the further orders in the quantum determinant are new results, obtained as

byproducts of the knowledge of the quantum determinant for every value of η < 1/2.

With some effort, one could compute the O(b2) contribution in (5.8) within our frame-

work. It is given by the following three graphs

(A) (B) (C)

where the propagator is given by (4.45).

6. The two point function

In this section we apply the technique developed in the previous sections to compute the

following two point function on the pseudosphere

〈
Vη/b(z1)Vε/b(z2)

〉
(6.1)
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up to O(ε) and O(b0) included, but to all orders in η and in the invariant distance.

According to [1], this result is related to the conformal block with null intermedi-

ate dimension through to the “boundary” representation of the “normalized” two point

function

g η/b, ε/b(ω) ≡

〈
Vη/b(z1)Vε/b(z2)

〉
〈
Vη/b(z1)

〉 〈
Vε/b(z2)

〉 = (1 − ω)2∆η/b F

(
η/b ε/b

η/b ε/b
; iQ/2, 1 − ω

)
(6.2)

where ω(z1, z2) is the SU(1, 1) invariant given in (4.46). The conformal block occurring

in (6.2) has ∆ = 0 intermediate dimension.

The procedure will be to compute the classical action and the quantum determinant

on the background (4.36) describing the pseudosphere with two curvature singularities: a

finite one η1 = η in z1 = 0 and an infinitesimal one η2 = ε in z2 = t. Since this classical

background is known up to O(ε), our results will be exact in η and perturbative in ε up to

O(ε) included. This perturbative background has been already computed in section 4 and

it is given by

ϕ2(z) = ϕcl(z) + 4 ε g(z, t) + O(ε2) (6.3)

where ϕcl(z) is the background field (2.19) describing the pseudosphere with a single finite

source η1 = η placed in z1 = 0 and g(z, t) is the propagator (4.45).

The two point function (6.1) up to O(b2) is

〈
Vη/b(0)Vε/b(t)

〉
= e−Scl(η, 0; ε, t)+Scl(0) × (6.4)

×
1

Z0

∫
D [χ] exp

{
−

1

2

∫

∆
χ

(
−

2

π
∂z∂z̄ + 4µb2 eϕ2

)
χd2z

}
( 1 + O(b2) )

= e−Scl(η, 0; ε, t)+Scl(0) ×

× (Det D(η, 0) )−1/2

(
1 − 8µb2ε

∫

∆
g(z, t) eϕcl(z)g(z, z) d2z + O(ε2)

)
( 1 + O(b2) )

where Scl(η, 0; ε, t) is the classical action (2.9) evaluated on the field ϕ2(z), while Scl(0)

and Z0 are respectively the classical contribution and the quadratic part of the partition

function Z occurring in (2.1) and (2.2).

The denominator occurring in (6.2) with z1 = 0 and z2 = t up to O(b2) reads

e−Scl(η, 0)+Scl(0)(Det D(η, 0))−1/2 e−Scl(ε, t)+Scl(0)(Det D(ε, t))−1/2 ( 1 + O(b2) ) (6.5)

where (Det D(η, 0))−1/2 has been already computed and it is given by (5.7).

Evaluating the classical action (2.9) on the field (6.3), we get the following perturbative

expression in ε

Scl(η, 0; ε, t) = Scl(η, 0) −
ε

b2
ϕcl(t) + O(ε2) . (6.6)

This formula for η = 0 provides

Scl(ε, t) = Scl(0) −
ε

b2
ϕcl(t)| η = 0 + O(ε2) (6.7)
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while

(Det D(ε, t))−1/2 = 1 − 8µb2ε

∫

∆
ĝ(z, t) eϕcl(t)| η = 0 ĝ(z, z) d2z + O(ε2) (6.8)

which is the quantum determinant contribution occurring in (6.4) evaluated on η = 0.

Thus, to orders O(ε) and O(b0) included, the logarithm of the “normalized” two point

function (6.2) with z1 = 0 and z2 = t becomes

log

〈
Vη/b(0)Vε/b(t)

〉
〈
Vη/b(0)

〉 〈
Vε/b(t)

〉 =
ε

b2

{
ϕcl(t) − ϕcl(t)| η = 0

}
(6.9)

− 8µb2ε

{∫

∆
g(z, t) eϕcl(z)g(z, z) d2z −

∫

∆
ĝ(z, t) eϕcl(z)| η = 0 ĝ(z, z) d2z

}
.

The first integral occurring in this expression can be computed by exploiting the partial

wave representation given in appendix B (see (B.26) and (B.27)). Because of invariance

under rotations, only the wave m = 0 contributes and we have

− 8µb2ε

∫

∆
g(z, t) eϕcl(z)g(z, z) d2z = (6.10)

= −8µb2πε

{
b0(|t|

2)

∫ |t|2

0
a0(|z|

2) eϕcl(z)g(z, z)d|z|2+a0(|t|
2)

∫ 1

|t|2
b0(|z|

2) eϕcl(z)g(z, z) d|z|2

}

where g(z, z) is given in (4.50). These integrals are computed through an integration by

parts whenever the incomplete beta function appear, as done for the one point function.

The other integral occurring in (6.9) is the tadpole contribution in the geometry of the

pseudosphere without singularities [1].

Now, we remark that (6.9) is invariant under SU(1, 1) transformations, as expected. In-

deed, since both classical fields ϕcl(t) and ϕcl(t)| η = 0 transform as in (2.14) under SU(1, 1)

and dw/dz is independent of η, the classical term is invariant. As for the quantum deter-

minant contribution, by using the transformation law (3.8) for g(z, z) and ĝ(z, z), together

with the equations for the Green functions g(z, t) and ĝ(z, t), we find that the variation

under SU(1, 1) of the quantum determinant contribution is given by

lim
r → 1

2

2πi

[ ∮

∂∆r

∂z( g(z, t) − ĝ(z, t) ) log

∣∣∣∣
dw

dz

∣∣∣∣
2

dz +

∮

∂∆r

( g(z, t) − ĝ(z, t) ) ∂z̄ log
dw̄

dz̄
dz̄

]
.

(6.11)

Since g(z, t ) − ĝ(z, t ) = O((1 − zz̄)2) when |z| → 1, these integrals vanish in the limit

r → 1; hence the expression (6.9) is invariant under SU(1, 1) transformations and we can

substitute tt̄ with the SU(1, 1) invariant ratio ω in the explicit expression for (6.9).

Thus, including also the classical terms, (6.9) becomes

log

〈
Vη/b(z1)Vε/b(z2)

〉
〈
Vη/b(z1)

〉 〈
Vε/b(z2)

〉 =
ε

b2

{
− log

(ωη − ω1−η )2

(1 − 2η)2
+ log(1 − ω)2

}

+ ε

{
2

(1 − ω1−2η)2

(
Bω(2 − 2η, 0) + ψ(2 − 2η) + γE +

1

2(1 − 2η)
(6.12)
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+ ω2(1−2η)

(
Bω(2η, 0) + ψ(2η) + γE +

3

2(1 − 2η)
− log ω

)

+ 2ω1−2η

(
log(1 − ω) −

1

1 − 2η

))
+ 2 log(1 − ω) − 3

}
.

with ω = ω(z1, z2) given by (4.46). According to the analysis performed in [1], up to the

orders O(b0) and O(ε) included, but exact in η and ω(z1, z2), the formula (6.12) gives the

expansion of the logarithm of the conformal block occurring in (6.2).

The expression (6.12), which is exact in η and ω up to orders O(b0) and O(ε) included,

provides the summation of two infinite classes of graphs, ordered according to a power

expansion in η.

In [4] the classical part and the quantum determinant were computed respectively up

to O(εη3/b2) and O(εη) included, by the explicit computation of every single graph. The

procedure presented here extends largely the results obtained in [4] because it allows to get

directly the sum of infinite classes of graphs, from which one can find the contribution of

all the graphs occurring at a given perturbative order without computing them separately.

The classical part at O(ε) gives

ε

b2

{
− log

(ωη − ω1−η )2

(1 − 2η)2
+ log(1 − ω)2

}
=

ε η

b2

{ }
(6.13)

+
ε η2

b2

{ }
+

ε η3

b2

{ }

+
ε η4

b2









+ · · ·

= 4
ε η

b2
ĝ(z1, z2) + 4

ε η2

b2

(
2ω log ω

(1 − ω)2
− 1

)
−

8

3

ε η3

b2

(
3ω (1 + ω) log ω

(1 − ω)3
+ 2

)

+
4

3

ε η4

b2

(
4ω (1 + 4ω + ω2) log ω

(1 − ω)4
− 6

)
+ · · · (6.14)

while the quantum determinant contribution at O(ε) provides the following infinite class

of perturbative graphs

ε

{
2

(1 − ω1−2η)2

(
Bω(2 − 2η, 0) + ψ(2 − 2η) + γE +

1

2(1 − 2η)
(6.15)

+ ω2(1−2η)

(
Bω(2η, 0) + ψ(2η) + γE +

3

2(1 − 2η)
− log ω

)
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+ 2ω1−2η

(
log(1 − ω) −

1

1 − 2η

))
+ 2 log(1 − ω) − 3

}
=

= ε η

{ }

+εη2









+ · · ·

= 2 ε η

(
3 +

2ω2 log ω

(1 − ω)2
− 2

1 + ω

1 − ω
Li2(1 − ω)

)

+
4 ε η2

(1 − ω)2

(
3 − 2 (1 + ω2) ζ(3) +

2

3
π2 ω log ω −

ω2 (5 + ω) log ω

(1 − ω)

−2(1+4ω+ω2) log(1 − ω) log ω − 2(1 + ω)2 log ωLi2(ω) + 2(1 + ω2)Li3(ω)

)

+ · · ·

where Liν(x) is the polylogarithm function.

Notice that, by using (B.10), the behavior of (6.12) when ω(z1, z2) → 1 is

log

〈
Vη/b(z1)Vε/b(z2)

〉
〈
Vη/b(z1)

〉 〈
Vε/b(z2)

〉 =

(
η (1 − η)

3

ε

b2
−

η (1 − 7η)

18
ε

)
(1 − ω)2 + O((1 − ω)3)

(6.16)

i.e. g η/b, ε/b(ω) → 1 for the normalized two point function (6.2).

The fact that
〈
Vη/b(z1)Vε/b(z2)

〉
→

〈
Vη/b(z1)

〉 〈
Vε/b(z2)

〉
when ω(z1, z2) → 1, i.e. when

the geodesic distance diverges, is the cluster property and it is the boundary condition used

in the bootstrap approach [1] to characterize the pseudosphere.

As a further check of our result (6.12), we consider the auxiliary bulk two point function〈
V−1/(2b)(z1)Vε/b(z2)

〉
containing the primary field V−1/(2b)(z1), which is degenerate at level

2. When the two point function contains a degenerate primary field at level 2, it satisfies

a second order linear differential equation and it can be determined explicitly [15]. In our

case, we have that [2]

g−1/(2b), ε/b(ω) = ωε/b2
2F1( 1 + 1/b2, 2ε/b2; 2 + 2/b2; 1 − ω ) (6.17)

Expanding the logarithm of this expression, we find

log [g−1/(2b), ε/b(ω) ] =
ε

b2
( log ω +2 log 2−2 log(1+ω) )+

ε

2

(
1 − ω

1 + ω

)2

+ O(εb2) (6.18)

up to O(ε) and O(b0) included. The expansion (6.18) agrees with our expansion (6.12)

evaluated for η = −1/2.
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7. Conclusions

We have obtained the one and two point functions on the pseudosphere with heavy charges

to one loop. For the one point function agreement is found with the bootstrap formula

given by ZZ [1] while the two point function provides a new expression for the case of one

finite charge and an infinitesimal one.

Furthermore we have proved that the correct quantum dimensions recovered to one

loop are left unchanged to all orders perturbation theory.

In [18] we extend the present approach to the conformal boundary case.

A. The background field at infinity

In this appendix we examine the behavior of the classical background on the pseudosphere

at infinity in presence of N sources. We already saw in section 2 that the one source

solution (2.19) behaves at infinity like

ϕcl(z) = − log(1 − zz̄)2 + const + O((1 − zz̄)2) (A.1)

i.e. no O(1 − zz̄) term occurs. This is relevant to have the second line of (2.10) vanishing

for a quantum field χ which behaves like log(1 − zz̄) when |z| → 1. Here we prove that

the term O(1 − zz̄) is absent also in the background ϕB generated by N sources. Since it

is simpler to work in the H representation, we begin by using it.

Being Q̃(ξ) a real function, we can choose two real independent solutions ỹj(ξ) of

ỹ′′j (ξ) + Q̃(ξ)ỹj(ξ) = 0 j = 1, 2 . (A.2)

Using the fact the the wronskian is different from zero, it is simple to prove the following

lemma: the identical vanishing of aỹ2
1 + bỹ2

2 + cỹ1ỹ2 implies a = b = c = 0. As explained in

section 2, the solution of the Liouville equation is given by

πµb2eϕ̃B(ξ) =
|w12|

2

F 2
(A.3)

where the most general form for F is

F = (α ỹ1(ξ) + β ỹ2(ξ))(ᾱ ỹ1(ξ̄) + β̄ ỹ2(ξ̄)) − (γ ỹ1(ξ) + δ ỹ2(ξ))(γ̄ ỹ1(ξ̄) + δ̄ ỹ2(ξ̄)) . (A.4)

The identical vanishing of F for real ξ implies, as a consequence of the previous lemma,

γ = ᾱ and δ = β̄, hence we can write

F = Y (ξ)Y (ξ̄) − Y (ξ)Y (ξ̄) . (A.5)

We notice that F is odd in Imξ, so that for small Imξ we have

1

F 2
=

1

4( Imξ + O((Imξ)3))2
=

1

4(Imξ)2
+ O(1) . (A.6)
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On the other hand, if we start from the ∆ representation, being w12 invariant, for zz̄ → 1

we have

πµb2eϕB(z) =
|w12|

2

[(1 − zz̄) + c1(1 − zz̄)2 + O((1 − zz̄)3) ]2

= |w12|
2

(
1

(1 − zz̄)2
−

2c1

(1 − zz̄)
+ O(1)

)
. (A.7)

Taking into account of the jacobian, (A.7) gives

1

F 2
=

4

|ξ + i|4

(
|ξ + i|4

16(Imξ)2
−

c1|ξ + i|2

4 Imξ
+ O(1)

)
=

1

4(Imξ)2
−

c1

|ξ + i|2 Imξ
+ O(1) (A.8)

which gives c1 = 0, when compared to (A.6).

B. Details about the Green function

In this appendix we outline some technical details necessary to compute the explicit form

of the Green function.

By exploiting the SU(1, 1) invariance, we can set the source with charge η/b in the

origin and the one with charge ε/b in t ∈ (−1, 1) \ 0.

By using the definition (4.24) and the expression of q(z) given in (4.18), we can perform

explicitly the integrals Iij(z) in the ∆ representation of the pseudosphere. They are given

by

I12(z)=−
tz + z/t − 2

(z − t) (z − 1/t)
+ C(η, t, β )

(
log( z − t ) − log( z − 1/t ) − log t2

)
− 2

(B.1)

I11(z)= z2η−1

{
−z

2z − t − 1/t

(z − t) (z − 1/t)
−

A(η, t, β)

2η

z

t
F ( 2η, 1; 1 + 2η ; z/t )

+
B(η, t, β)

2η
z t F ( 2η, 1; 1 + 2η ; z t )

}
(B.2)

I22(z)= z1−2η

{
−z

2z − t − 1/t

(z − t) (z − 1/t)
−

A(1 − η, t, β)

2(1 − η)

z

t
F ( 2 − 2η, 1; 3 − 2η ; z/t )

+
B(1 − η, t, β)

2(1 − η)
z t F ( 2 − 2η, 1; 3 − 2η ; z t )

}

(B.3)

where the functions A(η, t), B(η, t) and C(η, t) are

A(η, t, β) = 2
η + (1 − η) t2

1 − t2
+

t β

1 − t2
= B(1 − η, t, β) (B.4)

C(η, t, β) =
1 + t2 + β t

1 − t2
=

A(η, t, β) + A(1 − η, t, β)

2
. (B.5)
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Notice that only the hypergeometric function of type F (a, 1; a + 1 ;x) occurs. It is related

to a special case of the incomplete beta function [16, 17]

xa

a
F (a, 1; a + 1 ;x) = Bx(a, 0) =

∫ x

0

ya−1

1 − y
dy . (B.6)

Now, by inserting the expressions of Iij(z) into (4.43), we find the explicit expression for

the propagator

g(z, t) = −
1

2 (1 − 2η)

1

(zz̄)η − (zz̄)1−η
× (B.7)

×

{ (
(zz̄)η + (zz̄)1−η

) [
C(η, t, β)

(
log ω(z, t) − log t2

)
+ 4 + 2Re h(t)

]

+
(zz̄)η

2η

[
A(η, t, β)

(
z/t F (2η, 1; 1 + 2η; z/t) + c.c.

)

− B(η, t, β)
(
z t F (2η, 1; 1 + 2η; z t) + c.c.

) ]

+
(zz̄)1−η

2(1 − η)

[
A(1 − η, t, β)

(
z/t F (2 − 2η, 1; 3 − 2η; z/t) + c.c.

)

− B(1 − η, t, β)
(
z t F (2 − 2η, 1; 3 − 2η; z t) + c.c.

) ] }

where ω(z, t) is the SU(1, 1) invariant

ω(z, t) =

∣∣∣∣
z − t

1 − z t

∣∣∣∣
2

t ∈ (−1, 1) (B.8)

which is related to the geodesic distance on the pseudosphere without sources.

We remark that the expression (B.7) satisfies the equation

−
2

π
∂z∂z̄ g(z, t) + 4µb2 eϕcl g(z, t) = δ2(z − t) (B.9)

for any β. By employing the expansion [17]

F ( a, 1; a + 1; w ) = a

∞∑

k=0

(a)k
k!

(
ψ(1 + k) − ψ(a + k) − log(1 − w)

)
(1 − w)k (B.10)

where (a)k = a(a + 1) . . . (a + k − 1) = Γ(a + k)/Γ(a) is the Pochhammer symbol and

ψ(x) = Γ′(x)/Γ(x), one can see that for any β the logarithmic divergence of g(z, t) when

z → t is exactly −1/2 log |z − t|2 because the following identity

(1 + t2 (1−2η)) C(η, t, β) − A(η, t, β) − A(1 − η, t, β) t2(1−2η)

(1 − 2η)(1 − t2 (1−2η))
= 1 . (B.11)

To determine β, we impose the monodromy of g(z, t) around z = t. When t < |z| < 1, by

using the identity [16]

F ( a, 1; a + 1; 1/w ) =
aπ

sin(aπ)
(−w)a +

a

1 − a
w F ( 1 − a, 1; 2 − a; w ) (B.12)
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we find that (−w)a introduces a term that breaks the monodromy. The vanishing of this

term leads to the equation

A(η, t, β) − t2(1−2η)A(1 − η, t, β) = 0 (B.13)

which allows to get

β = − 2
η + (1 − η ) t2 − t2 (1−2η)

(
1 − η + η t2

)

t ( 1 − t2 (1−2η))
(B.14)

which solves the problem of finding the O(ε) terms of the accessory parameters in the

perturbed geometry.

The expression for Reh(t) can be obtained by studying the asymptotic behavior of

the Green function g(z, t) when |z| → 1. To get this result, we set z=eiθ in (B.7) and we

analyze its leading term. By using the identity (B.12) and the following one [16]

F ( a, 1; a + 1; w ) =
a

a − 1

1

w

(
F ( a − 1, 1; a; w ) − 1

)
(B.15)

we get

F ( a, 1; a + 1 ; 1/w ) = a

(
π

sin(aπ)
(−w)a +

w

1 − a
+

w2

2 − a
F ( 2 − a, 1; 3 − a ;w )

)
(B.16)

which allows us to reduce all the hypergeometric functions occurring in (B.7) to hyperge-

ometric functions with the same parameters but different variables. Then, for any β we

find that the leading order in (1 − zz̄) of g(z, t) contains no contributions from the hyper-

geometric functions but it includes a term (−w)a which would break the monodromy. The

coefficient of such a term vanishes because of the explicit expression for β found before.

Thus, we have that the leading order in (1 − zz̄) of the expression contained between

the curly brackets in (B.7) is

2
(

2Re h(t) − C(η, t, β ) log t2 − 2
)

(B.17)

where β is given by (B.14). By requiring the vanishing of (B.17), we find the explicit

expression of Re h(t)

Re h(t) =
1

2

(
1 + t2 (1−2η)

1 − t2 (1−2η)
log t2 (1−2η) + 2

)
(B.18)

which is also given in (4.44). The vanishing of (B.17) is necessarily imposed by the fact

that the divergence of the field ϕ when |z| → 1 is at most logarithmic.

We will find later that g(z, t) vanishes quadratically when |z| → 1. One could see this

also at this level, but it is much simpler once the expansion of g(z, t) in partial waves is

available.

By exploiting the invariance in value of the Green function under rotations, we can

easily generalize our formula to the case of complex t ∈ ∆. Thus, we have that t2, z/t, z̄/t

z t, and z̄ t become respectively tt̄, z/t, z̄/ t̄, z t̄, and z̄ t.
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The final expression for the Green function is

g(z, t) = −
1

2

1 + (zz̄)1−2η

1 − (zz̄)1−2η

{
1 + (tt̄)1−2η

1 − (tt̄)1−2η
log ω(z, t) +

2

1 − 2η

}
(B.19)

−
1

1 − (zz̄)1−2η

1

1 − (tt̄)1−2η
×

×

{
(tt̄)1−2η

2η

z

t
F ( 2η, 1; 1 + 2η; z/t ) +

(zz̄)1−2η

2(1 − η)

z

t
F ( 2 − 2η, 1; 3 − 2η; z/t ) + c.c.

−
1

2η
z t̄ F ( 2η, 1; 1 + 2η; z t̄ ) −

(zz̄)1−2η(tt̄)1−2η

2(1 − η)
z t̄ F ( 2 − 2η, 1; 3 − 2η; z t̄ ) + c.c.

}
.

By using (B.16), this Green function can be written also in the explicit symmetric form

given in (4.45). Notice that g(z, t) is regular at z = 0, as we expect.

It is easy to see that g(z, t) is invariant under η → 1 − η, which is the semiclassical

version of the duality α → Q − α. Here it is only a formal invariance because, due to the

finite area condition around the sources, η < 1/2 must hold.

A particular case of the Green function (B.19) is given by the limit η → 0, which

recovers the geometry of the pseudosphere without curvature singularities. To compute

this limit, we use

F ( a, 1; a + 1; w ) = 1 − a log(1 − w) +
∑

k >2

(−1)k+1ak Lik(w) (B.20)

and

F ( 2 − a, 1; 3 − a; w ) = −
2

w2

(
log(1 − w) + w

)
+

1

w2

∑

k >1

ak
(
2Lik+1(w) − Lik(w) − w

)
.

(B.21)

After some algebraic manipulation, we find the following SU(1, 1) invariant expression

lim
η → 0

g(z, t) = −
1

2

(
1 + ω

1 − ω
log ω + 2

)
≡ ĝ(z, t) , ω =

∣∣∣∣
z − t

1 − z t̄

∣∣∣∣
2

. (B.22)

This is the propagator on the regular pseudosphere [6, 1], whose classical background is

eϕcl|η=0 =
1

πµb2(1 − zz̄)2
. (B.23)

To close this appendix, we provide the partial wave expansion of the propagator g(z, t),

given in (4.45) or (B.19). For x ∈ R, we have that

log ( 1 − 2x cos θ + x2 ) = − 2

∞∑

m=1

xm

m
cos(mθ) x2

6 1 , x cos θ 6= 1 (B.24)

and

xeiθ

a
F ( a, 1; a + 1; xeiθ ) + c.c. = 2

∞∑

m=1

xm

a − 1 + m
cos(mθ) 0 6 x 6 1 . (B.25)
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By using these expansions, we can write the propagator (B.19) as a Fourier series as follows

g(z, t) =

∞∑

m=0

gm(x, y) cos(mθ) x = |z|2 , y = |t|2 . (B.26)

where θ = arg(z) − arg(t). The Fourier coefficients can be written in the symmetric and

factorized form

gm(x, y) = θ(y − x) am(x) bm(y) + θ(x − y) am(y) bm(x) (B.27)

where the wave with m = 0 is given by

a0(x) =
1 + x1−2η

1 − x1−2η
b0(y) = −

1

2(1 − 2η)

(
1 + y1−2η

1 − y1−2η
log y1−2η + 2

)
(B.28)

while am(x) and bm(y) for m > 1 read

am(x)=
xm/2

1 − x1−2η

(
1 −

m − (1 − 2η)

m + (1 − 2η)
x1−2η

)
(B.29)

bm(y)=−
y−m/2

m(m − (1 − 2η))

(
(1 − 2η)

1 + y1−2η

1 − y1−2η
(1 − ym) − m(1 + ym)

)
. (B.30)

This expansion allows to find the asymptotic behavior of the Green function (B.19) at

infinity in a simple way. Indeed, since for any m

bm(y) = O((1 − y)2) when y → 1 (B.31)

then also the propagator vanishes quadratically at infinity

g(z, t ) = O((1 − zz̄)2) when |z| → 1 . (B.32)

From the behavior

am(y) ∝
1

1 − y
when y → 1 (B.33)

we see that g(z, t) given in (B.19) is the unique Green function which does not diverge at

infinity.

The Fourier expansion simplifies also the analysis of the limit η → 0. Indeed, taking

the expressions of am(x) and bm(y) in this limit, with a special care for the case m = 1, one

can easily verify that they reproduce the Fourier expansion of the propagator (B.22), which

was found in [8] and was used there to perform a three loop calculation on the background

of the regular pseudosphere.
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